Prenatal Lead Exposure and Schizophrenia: A Plausible Neurobiologic Connection

نویسنده

  • Tomás R. Guilarte
چکیده

Schizophrenia: A Plausible Neurobiologic Connection In their article in the April issue of EHP, Opler et al. (2004) raise the intriguing possibility that prenatal exposure to the ubiquitous developmental neurotoxicant lead (Pb2+) may be associated with schizophrenia, an adult psychiatric disease. Although the study has certain limitations that the authors discussed, it brings to light the possibility that prenatal Pb2+ exposure may be a risk factor for the expression of schizophrenia later in life. If an association between developmental Pb2+ exposure and schizophrenia exists, then identifying plausible neurobiologic substrate(s) would be useful in future studies. A common and potentially critical link between developmental Pb2+ exposure and schizophrenia is the disruption of glutamatergic synaptic activity—specifically, hypoactivity of the N-methyl-D-aspartate subtype (NMDAR) of glutamatergic receptors. The “glutamatergic hypothesis” of schizophrenia originated from observations that administration of NMDAR noncompetitive antagonists exacerbates psychotic symptoms in schizophrenics and mimics schizophrenia in nonpsychotic subjects (Coyle et al. 2003; Konradi and Heckers 2003). Further, the administration of such antagonists in animals models certain aspects of the disease. There is experimental evidence that Pb2+ is a potent and selective inhibitor of the NMDAR, and the NMDAR plays an important role in neuronal development, synaptic plasticity, and learning and memory (Nihei and Guilarte 2001). Similar to rats exposed to Pb2+ during development, several lines of evidence have implicated NMDAR hypofunction in the pathophysiology of schizophrenia (Coyle et al. 2003; Konradi and Heckers 2003). Developmental exposure to Pb2+, in the same concentration range as implied in the work by Opler et al. (2004), alters gene and protein expression of NMDAR subunits in the rat brain (Nihei and Guilarte 2001). A consistent change in NMDAR subunits measured in young adult Pb2+-exposed rats is a decrease in NR1 subunit gene expression (Nihei and Guilarte 2001). These findings resemble some of the changes in NMDAR subunit expression described in the brain of schizophrenic patients (Konradi and Heckers 2003; Tsai and Coyle 2002). Further, there is compelling evidence for a common molecular target, the glycine modulatory site of the NMDAR. A proposed mechanism by which Pb2+ inhibits NMDAR function is by binding to a divalent cation site associated with the glycine site and allosterically inhibiting glycine binding (Hashemzadeh-Gargari and Guilarte 1999). The significance of the antagonistic action of Pb2+ at the glycine site of the NMDAR is that studies have identified abnormalities associated with schizophrenia that interfere with the activation of the glycine modulatory site of the NMDAR (Coyle and Tsai 2004a). Further, the use of NMDAR glycine site agonists such as glycine, D-serine, or D-cycloserine in clinical trials has demonstrated some efficacy in ameliorating the negative symptoms and cognitive disabilities in schizophrenics (Coyle and Tsai 2004a, 2004b). Although an environmental component to the etiology of schizophrenia has been proposed (Tsuang 2000), developmental Pb2+ exposure has not been considered a potential risk factor for schizophrenia until the article by Opler et al. (2004) was published. It is possible that in susceptible individuals, the presence of Pb2+ during the development of the central nervous system may be directly related or may contribute to the expression of schizophrenia later in life. The work on Pb2+ and the NMDAR is supported by grant ES06189 from the National Institute of Environmental Health Sciences. The author declares he has no competing financial interests.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activities and Organophosphate Exposures: Response

Schizophrenia: A Plausible Neurobiologic Connection In their article in the April issue of EHP, Opler et al. (2004) raise the intriguing possibility that prenatal exposure to the ubiquitous developmental neurotoxicant lead (Pb2+) may be associated with schizophrenia, an adult psychiatric disease. Although the study has certain limitations that the authors discussed, it brings to light the possi...

متن کامل

Stereological analysis of cornu ammonis in prenatally stressed rats: a heuristic neurodevelopmental model of schizophrenia

Objective(s):The hippocampus has been implicated in pathophysiology of schizophrenia. Prenatal stress is a contributing risk factor for a wide variety of neuropsychiatric diseases including schizophrenia. This study examined long-term effects of prenatal restraint stress on the stereological parameters in the Cornu Ammonis (CA) of adult male rats as an animal model of schizophrenia. Materials ...

متن کامل

Prenatal lead exposure, delta-aminolevulinic acid, and schizophrenia.

Schizophrenia is a severe mental disorder of unknown etiology. Recent reports suggest that a number of environmental factors during prenatal development may be associated with schizophrenia. We tested the hypothesis that environmental lead exposure may be associated with schizophrenia using archived serum samples from a cohort of live births enrolled between 1959 and 1966 in Oakland, California...

متن کامل

Prenatal Exposure to Lead, δ-Aminolevulinic Acid, and Schizophrenia: Further Evidence

BACKGROUND A previously conducted study of prenatal lead exposure and schizophrenia using delta-aminolevulinic acid, a biologic marker of Pb exposure, in archived maternal serum samples collected from subjects enrolled in the Childhood Health and Development Study (1959-1966) based in Oakland, California, suggested a possible association between prenatal Pb exposure and the development of schiz...

متن کامل

Fetal Environment and Schizophrenia

Schizophrenia and related disorders are adult-onset illnesses with no definitively established risk factors. Several studies report that exposures to infection and nutritional deprivation during early development may elevate the risk of later developing schizophrenia, specifically during the prenatal period. Preliminary evidence implicates lead exposure as well, suggesting that chemical exposur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 112  شماره 

صفحات  -

تاریخ انتشار 2004